

Agile ERP: “You don’t know what you’ve got ‘till it’s gone!”

Gerard Meszaros
clearStream Consulting

gerard.meszaros@acm.org

Janice Aston
Canadian Pacific

Janice_Aston@cpr.ca

Abstract
ERP systems are known for their highly integrated

nature and proprietary development tools and
processes. There are a number of things we just take
for granted in .Net & Java that turn out to be critical
for doing Agile. This paper describes the impact these
implicit assumptions had on applying agile
development processes on a medium-sized custom
development project based on SAP NetWeaver 2004s.
We describe the problems encountered and how the
project team overcame them.

1. Introduction

1.1 Company Background

Based in Calgary, Alberta, Canadian Pacific (CP) is
a Class 1 North American railway providing freight
transportation services over a 14,000-mile network that
extends from the Port of Vancouver in Canada's west
to the Port of Montreal in Canada's east, and to the
U.S. industrial centers of Chicago, Newark,
Philadelphia, Washington, New York City and Buffalo.

 Canadian Pacific was founded in 1881 to link
Canada's populated centers with the vast potential of its
relatively unpopulated west. This incredible
engineering feat was completed on Nov.7, 1885 - six
years ahead of schedule - when the last spike was
driven at Craigellachie, B.C.

Consistent with over 120 years of traditional
engineering project experience, most Information
Technology projects at CP embrace traditional
waterfall or document-driven development methods.
The stated preferences are to “Reuse, Buy, Build” in
that order. In an attempt to improve its IT delivery
capabilities, CP has recently started to experiment with
agile methods on the .Net “Build” side of the house.
The PR3 project was the first SAP project to attempt
applying full-blown agile development at CP.

1.2 Project Background

The Price Right 3 (PR3) project was chartered to
replace a failing application (known as Price Right 2 or
PR2) and align distinct business processes
(applications). Despite the rich functionality in the
existing application, the “hopping” between multiple
applications to complete the Lead to Contract business
process (See Figure 1.) was highly unproductive. The
primary driver for our business case was increased
usability resulting in productivity gains thereby freeing
up account manager time for proactive selling to
increase revenues. In keeping with an agile mindset,
this drove many of our decisions.

Figure 1. The Lead to Cash business process

The PR3 project was part of a multi year pricing
program designed to deliver a custom built pricing
solution. The first project, Price Right Interline (PRI),
provided the ability to exchange prices with other
railways using web services. That project was
executed in .Net using agile development and project
management processes augmented by key UxD
processes [1]. It delivered on time, under budget and
with exceptional quality and was considered a
resounding success by the business, not just IT.
Riding on this high we felt confident tackling the next
phase, replacement of the legacy quote application.
Wrong!

1.3 Why Custom Development in SAP?

Part way through the planning of the PR3 project,
CP signed a strategic agreement with SAP Canada and
adopted an “SAP First” philosophy. After saying
goodbye to a high performing .Net development team,
the remnants of the team soldiered on. We ramped up

the team with “agile friendly” SAP resources. A
motley crew of Agile purists, .Net bigots and Agile
newbies set out on an adventure and had no idea what
we were getting into. We started by comparing the
requirements for PR3, which were by that time quite
well known, with the capabilities of the SD module of
SAP’s ERP offering and determined that there was a
sizable gap both in functionality and in usability. The
business made it very clear that they would not accept
anything that was any less usable than the existing PR2
and PRI applications.

On the plus side, the SAP SD module implements
the Quote to Bill process and is pre-integrated with the
Finance module that implements Bill to Invoice to
Cash (See figure 2). SAP also comes with a lot of
standard functionality that can be accessed from within
both standard SAP code and from custom-written code.
To leverage these capabilities and the pre-integrated
functionality we decided to develop a custom-built
quote management front end in ABAP (SAP’s
programming language) to build the quotes that would
later flow through the Quote-Cash process. (We
considered doing the front end in .Net but decided that
it would involve too much duplicated effort between
the .Net code and the ABAP in the back end.)

Figure 2. The Lead to Cash process in SAP at CP

1.4 Why Agile?

For both the PR3 business lead and the PR3 project
manager, using Agile on the PR3 project seemed like a
natural fit. Both had been through the PRI project
which had delivered excellent results. When asked for
his reaction to the agile process, the PRI project
business lead had responded to the effect that “There
was no way we (the business) could have described
this application in requirements documents” and that
agile was the only way that made sense. We also had
several experienced .Net agilists who had been through
the PRI project to act as business analysts, UI
designers, Fit test [3] automaters, agile process
coaches as well as retrofitting the PRI application to
use the SAP pricing engine as its core.

From a technical perspective, using agile with SAP
also seemed to make sense because SAP is delivered as
a fully working, though standardized and standalone
system. This means one can start the project with

working software and evolve the system from there by
configuring various aspects of its behavior and hooking
up various integration interfaces with other
applications in the enterprise. Further supporting agile
development, SAP comes with its own Recorded Test
tool, eCATT and xUnit test framework [2] ABAP Unit.
So we said to ourselves “ABAP is just another object-
oriented programming language; how hard could it be
to use agile?!”

The rest of this paper describes all the things we
take for granted in the .Net, Java and scripting
language worlds that make agile development possible
and how we found them to be lacking in the SAP
ecosystem.

2. Product-Centric Viewpoint

SAP is in the business of selling business process
automation. The applications they sell are each
centered around a particular business process which
they automate from end to end.

SAP benchmarks the business process before they
automate it and they market the automated version of
the process as an industry best practice. The SAP
product specialists one hires to help one implement
SAP know the product inside and out and will help you
determine which “switches” to flip to get it to behave
the way you want it to – assuming that what you want
is one of the variations that SAP has allowed for. It is
widely felt in the SAP community that most companies
should change their business processes to match what
SAP has implemented. Unfortunately, when your
business process is your competitive advantage,
reconciling these opposing views can be a challenge.

This “the product works this way” mindset is at
serious odds with the “whatever the customer wants”
mindset of an agile team. We had many discussions
where the SAP side of the team told the business side
of the team that “we cannot do it the way you want
because SAP does it this (other) way”. Eventually,
though, we often came to the realization that we had to
do it the way the business requested. Fortunately, SAP
often provides a mechanism called “user exits” to
override the algorithms it implements. For example,
unit of measure conversions between “per car”, “per
net ton” and “per hundredweight” were “just math” in
.Net but in SAP we had to configure the SD module to
do this conversion. In the end, however, we could not
get SAP’s rounding of the price to work properly so we
had to override the unit of measure conversion via
SAP-provided “user exits”.

3. Specialization of Roles

The SAP architecture is highly configurable. To
achieve the flexibility required to accommodate the
needs of SAP’s breadth of clientele, almost everything
is data-driven. There are four kinds of data in an SAP
system: The most volatile data is the Transactional
Data such as Quotations, Billing Documents and
Invoices. Master Data is the more stable data that
Transactional data references; things like Customers
and Materials. Configuration Data is used to control
the behavior of the SAP-provided functionality; it may
determine which variation of a process is executed or it
may define installation-specific algorithms or business
rules. Even the executable ABAP code itself is
considered to be data that is stored in tables and then
compiled into memory as needed.

The specialists who configure the product are called
“functional analysts”. They need such deep knowledge
therefore most SAP resources are highly specialized
and know only one or two modules. SAP further
encourages this by offering extensive certification
courses without which it is hard to get hired on by
potential employers.

Even the ABAP programmers are very specialized
because of the need for intimate knowledge of the SAP
module’s table structures and programming APIs.
When we started recruiting for the SAP incarnation of
the PR3 project, we quickly encountered this issue and
had to go back to the recruiting well many times before
we found resources with the right module
specializations and a willingness to try agile
development at our expense. We ended up hiring two
SD functional analysts, and four ABAP developers
each of whom had SD experience. Some of the ABAP
developers had an additional area of expertise. Contrast
this with the .Net world where “a developer is a
developer” and can be expected to do most anything.

Many of the task a .Net developer would do for
themselves, such as installing software, configuring
software components, etc. cannot be done by normal
ABAP developers in SAP. A special skill set known as
“Basis” needs to be asked to do these things. It turns
out you need these Basis folks to do all sorts of stuff
for you at pretty regular intervals throughout the
project and we really should have hired one for our
project.

Most traditional IT projects at CP have a Solution
Architect who is responsible for the integrity of the
application and how it interacts with all the other
systems. This role doesn’t seem to exist in the SAP
world and the few people who could do it are very
senior and very much in demand. On most simple
implementation projects, the functional analysts work
with the business to map out the business processes,

determine how to configure the product to automate
the process, and write up design documents telling the
ABAP developers what custom code they need to
write. (See Fig. 3.) Based on this we asked one of our
functional analysts to carry out the role of solution
architect. He agreed reluctantly when we promised him
lots of support and coaching. But after several months
it because very apparent that architecture really isn’t
part of the functional analyst’s job description which is
very much a product-centric role. We ended up having
an experienced Java/.Net solution architect play the
role instead.

Figure 3. Traditional SAP project roles and
communication paths

The extreme specialization of roles made estimation
and velocity tracking a bit of a challenge. Traditional
agile methodology assumes that people are generalists
who can play whatever roles are needed at a particular
time. This is certainly not the case with functional
analysts (who only write documents and configure the
product) and ABAP developers (who only write code.)
We started off by assigning separate story point counts
for functional work and for development work and
keeping track of team velocity for each. After a while it
became obvious that development was the bottleneck
so the importance of configuration points diminished;
we still noted them while estimating but we didn’t
bother calculating “configuration velocity”.

4. Communication & Collaboration

Agile development processes put a lot of emphasis
on collaboration and rich person-to-person
communication. This proved to be a challenge due to
several factors in play in the SAP community at CP.

The first challenge is related to the specialization of
roles: traditional SAP development is a document
driven process. The functional analysts examine the
business processes of the company and determine how
the product needs to be configured to automate those
business processes. The processes are captured in one
set of documents and the planned changes to
configuration data in another. If any code or tables are
required, these are documented and passed on to the
ABAP developers for development. The ABAPers
often have to ask the Basis group to do the really
technical infrastructure things for them, things like

license keys to activate various bits of functionality,
security, investigating server performance issues, etc..

On their previous projects, our ABAP developers
rarely spoke to business people and as such had not
developed the ability to communicate using the
language of the business. We had many lengthy
discussions where it turned out that everyone was in
violent agreement about something but the SAP-
specific language being used by the SAP people was
obscuring this fact. Further complicating things is that
SAP AG’s mother tongue is German so much of the
code and data schema uses German terms or
abbreviations. As the more technical non-SAP people
on the project learned new SAP terms, they would user
their SAP “decoder rings” to provide simultaneous
translation to plain English for the business.

Figure 4. PR3 project roles & communication paths

We suspect that the document-driven mindset is
also the root cause of our difficulties getting people to
collaborate, especially cross-functionally. We had to
push hard to get developers to pair program and for
developers and functional analysts to sit down side-by-
side to work on stories that required both configuration
and coding. We still see occasions where they fall back
to doing their own kind of work and then “throwing it
over the wall” to the other specialty to do their job and
this often results in several trips back-and-forth over
the wall before the functionality actually works.

Another challenge has been instilling a mindset of
incremental delivery. This has been especially difficult
with the functional analysts who need to do a lot of up
front analysis for database extensions and data loading
programs. We defined user stories for this analysis but
work tended to go on for iteration after iteration. We
also saw the same problem with some of the ABAP
developers working the data load programs; we asked
for an initial delivery of “quick & dirty” data load to
get our development environment up and running.
What we got in the same timeframe was a half-built
(not working) production quality data load program!

Another standard practice on agile projects is the
use of a self-directed (not self-managed) team. We
have large information radiators to convey what user
stories and tasks need to be done next and the team has
gotten pretty good at working on the next most
important item. Where the team has had a few
challenges is on work processes improvements being
initiated by a peer. The process changes we have

implemented were usually initiated by the project
manager and not by individual team members. We
also have had to poke fairly hard during our biweekly
iteration retrospectives to get suggestions for ways to
improve the process.

There has been some reluctance to embrace more
collaboration development practices such as pair
programming and we have had occasions when a
developer has “gone dark” (reverted back to working
on their own) for several days at a time. In this instance
the project manager initiated discussions with the
development team resulting in a mini-QA process
consisting of mini-design discussions and frequent
code inspections if pairing wasn’t being used.

5. Server-Based Development

In .Net and Java our developers are used to working
on their own workstations and choosing when to
commit their changes to the continuous integration
server. This allows everyone to work independently
and expect all tests to run green when their changes are
done.

One of the biggest and highest impact surprises we
encountered early in the project was that ABAP
development in SAP is server based. Developers run
the SAP GUI on their own PCs but all the ABAP code
is stored and executed on the development server. This
means that every time a developer saves and compiles
their code, all the other users on the server see the
change immediately. This meant that we would not be
able to run all the unit tests and expect to get all of
them to pass because someone would always have
some functionality in progress which results in code
that didn’t compile or didn’t pass its tests.

ABAP development teams traditionally get around
this by using a pessimistic locking model; this involves
dividing up the work based on the affected objects or
function modules so only one developer needs to touch
each one. This makes story-driven development
difficult because stories rarely are confined to just one
object. It also makes running regression tests, whether
unit or functional, all but impossible as we quickly
found out when a test tool vendor came to show us
their wares and co-habitation of the development
environment quickly caused disruption on both sides.

5.1 The “Agile Zone” to the Rescue

To address the server-based development issues, we
worked with some senior people at SAP Canada to
come up with the concept of an Agile Zone consisting
of one dedicated developer workspace (on a shared
server) for each pair of developers and one for our
business testers. We initially proposed installing SAP

on each of our PCs and they countered with a proposal
to build a proper SAP development server for us and
then to clone it n times on the same physical server. At
first, they were sceptical about how anything other than
the traditional pessimistic locking model could work
for server-based development. We had to educate them
about how the agile update-edit-test-checkin process
works.

Because this was considered a rather radical idea
within the CP SAP community, we spent a great deal
of time gaining support and buy in for the concept. We
had to run this idea past all sorts of committees within
CP’s IT organization to get their blessing even though
we were prepared to pay for it from our own project
funds. In the end we were allowed to go ahead and
build it. This lead to our next roadblock: a 12 week
lead time for the server from our IT Infrastructure
outsourcer.

We convinced the infrastructure supplier to install
an existing commodity server (only 4 weeks lead time)
so that we could start having SAP installed and
configured for us. We ordered a memory upgrade
which would be installed whenever it arrived.

We worked with our Basis expert who came up with
the Transport strategy (English translation: Intersystem
Code promotion policies). He also finalized the
configuration of our system and it’s clones. When we
turned everything on, all four SAP instances on the
server ground nearly to a halt. The problem was
eventually traced to a faulty SAN configuration for our
page files. The ABAP developers soon became experts
at implementing the Transport-Red-Green-Transport
pattern (English translation: Update, Write Tests,
Write Code, Check-in”). This allowed us to organize
the work around user stories rather than the objects
they modify. It also allowed us to write and run ABAP
Unit tests and expect a green test run before
transporting our changes to the integration Pre-Dev
server.

At one point we had to shut down all our developer
workspaces and have everyone work in the main Pre-
Dev server while a system upgrade was done. You
should have heard the developers complain about
having to go back to how they had been so content to
work for so many years!

6. SAP is an Integrated System

We initially defined a release plan that delivered
working software in 5 releases over a year and a half.
Based on our experiences in the .Net world where we
could deploy our application on our own schedule, we
simply assumed that we would be able to fly under the
radar and deploy whenever we wanted. Unfortunately,
as soon as we talk about putting code into the ERP Dev

environment, strict governance processes kick in to
review changes and potential impacts.. Welcome to the
“Integrated System”! Discussions to identify the
“integration points” (areas of software overlap) early
and develop ways to “pre test” the integration without
all our software being present merely opened the
“integrated system” can of worms even further.

 One of the “benefits” of SAP is that it is a fully
integrated system that implements an entire business
process – in our case, Lead to Cash. This requires that
the entire business process be thoroughly understood
from end to end to avoid “rework”. In our case, we
were only implementing the Lead to Quote part of the
process (See Figure 2). The Order to Invoice to Cash
process was already implemented by another project
and the Quote to Contract to Order parts of the process
are planned for sometime in the future.

Our agile philosophy was to “not close any doors”
and that some rework was inevitable, acceptable and
manageable. The established SAP sustainment group at
the company thought otherwise; they wanted to avoid
any rework at all costs. This led to bitter disagreements
in design reviews and to protracted speculation and
negotiation about how the functionality of the two
projects, while never actually interacting, would be
aligned. So much for flying under the radar!

A further issue is that we must align our schedule
with the implementation of the latest service packs
from SAP because they add important usability-related
capabilities to the relatively new ABAP Web Dynpro
UI framework we are using.

The “Agile Zone” has helped mitigate many of the
impacts of the “integrated system” during the
development phase of the project by giving us
complete control over our development environment.
We can do our development without being impeded by
the waterfall QA processes of the sustainment group
and verify that our design works before we show it to
them. The discussion thus changes from “could this
possibly work” to “does this line up with how the
company wants to do things”. We expect some rework
at this point but our safety net of automated tests
should let us make whatever changes we need to make
quickly and safely.

The sad reality is that deploying software is well
beyond the control of our own project. Initially, no one
could even tell us how long this would take because
the organization was still trying to figure out how to
manage multiple simultaneous projects in the ERP
space. We are now estimating a 3 month delay between
when we have fully tested, ready to deploy software in
our “Agile Zone” and when it will be deployed to
PROD.

7. What’s Next?

As of early May, 2007 we are on our 16th 2-week
iteration. Every iteration starts with an iteration
planning meeting and ends with a big-screen demo and
an iteration retrospective. The business is thrilled with
the way the quote management application is taking
shape; they believe it will be even easier to use than the
fat client desktop application they are using today.
(Who would have thunk they would find an SAP
application to be more usable!)

We are preparing manual story tests for each user
story and writing unit tests in ABAP Unit. We are
using Fit.Net via the SAP .Net Connector to prepare
component tests for the pricing configuration. We are
reusing the Fit functional tests we prepared for the
Interline Pricing (PRI) project as regression tests for
the hybrid SAP/.Net product. We are also automating
some functional “smoke tests” for the web-based user
interface.

Our team is starting to mature in its adoption of
Agile practices. Some team members can no longer
imagine implementing an SAP solution in a traditional
fashion. They claim there is no going back and we
have spoiled them for their next project. To address
the cultural clashes we have segregated all integration
activities managing them in a more traditional fashion.
We are agile at the core with a traditional wrapper
facing outwards.

We have recently participated in the required
architecture reviews, design reviews, code &
configuration walkthroughs with the sustainment
group. There is a growing realization that we are not
the “undisciplined cowboys” as originally thought. In
fact they are rather impressed with some of our
development practices. Who knows, maybe they will
consider adding them to their development best
practices.

8. Conclusions

Be prepared to challenge many assumptions that
you would take for granted in the .Net/Java worlds.
Both the nature of the server-based environment and
the associated BDUF/waterfall mentality it engenders
in the established ERP development community can be
serious impediments to implementing full-on agile
practices such as test-driven development. Some agile-
friendly practices such as Pair Programming are not
affected but the much-too-continuous nature of server-
based development makes automated testing and
storytest-driven development challenging. With some
effort and persistence, we have been able to build an

Agile Zone development environment that resembles
what Java and .Net developers take for granted.

Many of the biggest obstacles are cultural. The
“You should change your business to match SAP’s
best practices” mindset is definitely at odds with the
Agile business value paradigm. The extremely
traditional document-driven development process is
probably the least agile-friendly aspect of ERP systems
but it is certainly not unique to ERP. Some BDUF
practices are necessary in the “integrated environment”
of an ERP system, most notably, alignment of key
business data such as customer but we are doing
emergent design of the user interface software and the
business logic behind it within our two week
development iterations.

This Agile ERP road has been long and full of
potholes. Would we run another Agile ERP custom
development project again? It depends on the
constraints. Compared with our initial projections of
the .Net version of the project, our costs have more
than doubled. We attribute this to the higher cost of
SAP resources compared to .Net resources and the
reduced productivity caused by the less-than-state-of-
the-art development tools. At this time we are not
leveraging the full power of SAP’s integrated system
because only one step of the Lead to Cash process is in
scope. Therefore, assuming there is significant custom
development involved, the question to ask oneself is
whether the integrated nature of SAP provides enough
value to overcome the additional development cost.

Assuming one has decided to do the custom
development in ABAP, is it worth doing it in Agile?
We would answer with a resounding YES!
Implementing agile development of an application in a
server-based ERP system definitely has some
challenges but it can be done and the benefits of
increased business involvement, buy-in and
satisfaction are huge.

9. References

[1] Meszaros, Gerard, Janice Aston, Adding Usability
Testing to an Agile Project

[2] Meszaros, Gerard, xUnit Test Patterns –
Refactoring Test Code, Addison Wesley 2007

[3] Mugridge, Rick, Ward Cunningham, Fit for
Development, Addison Wesley 2005

